imovies
当前位置:首 页>> 百 宝 箱 >>有关光纤

有关光纤

  光纤的完整名称叫做光导纤维英文名是 OPTIC FIBER,也有叫OPTICAL FIBER的,是用纯石英以特别的工艺拉成细丝,光纤的直径比头发丝还要细,但它的本事非常大,可以在很短的时间内传递巨大数量的信息。
  依目前取得的水平。人们已经实现在一根光纤中每秒传递几百个“太”位(T=1012,10的12次方)的信息速率。而且这个速率还远远不是光纤的传输速率的极限。光纤的刨面结构和同轴电缆相似,只是没有网状屏蔽层。中心是光传播的玻璃芯。在多模光纤中,芯的直径是15μm~50μm。而单模光纤芯的直径为8μm~10μm。芯外面包围着一层折色率比芯低的玻璃封套。以使光纤保持在芯内。它是利用了光的全反射原理。这样信号能量损失小。再外面的是一层薄的塑料外套,用来保护封套。光纤通常被扎起来,外面有外壳保护。纤芯的石英玻璃丝是横截面积很小的双层同心圆柱体,它质地脆,易断裂,因而在外有一保护层。目前我们通常在使用光纤的时候,其带宽的利用率是非常低的。主要原因是,现在计算机都是采用集成电路来运行的,也就是说在计算机内传输的都是电的数字信号。而光纤则是传递信号的。两台计算机之间如果要互通信息就要先把某一台计算机发出的电信号转变成光的形式送到光纤上去传输,而传到另一台计算机那一端时则又需要把光形式的信号转变过来,还原成电信号。光纤的传递容量非常大,但是集成电路对信号的处理速率与光纤能传递的速率相比就很低了。这就出现了一个瓶颈。因为这个限制的缘故,一般光纤通信时速率不能够做得很高。当然,现在又有了新的方法来解决这个问题。如用光波的波长复用技术,这种复用技术称为“WDM”。简单讲就是把不同的光谱作为每路数据传输信道的载波,分别携带多路信号,再分别通过不同的入射角把这些多路的光线合到一起成为一束混合光,在光纤里传输。到达传输对方时再用相反的途径把混合在一起的光分解开来,分别送到各路信道里去。另一方面,光纤的制造工艺和材料也在发展中。现在新出一种“全频”光纤,可以传递比原来宽得多的光谱的信号。最近出现的“DWDM”就是密集波分复用技术,用这种技术在一根光纤里可以同时传输几百路高速数字信号,并且,现在可以根据需要放置许多光纤芯,因此,一些光缆可以同时传递更加大量的信息。
  光纤的特点有:传输速度快,距离远,内容多,并且不受电磁干扰,不怕雷电击,很难在外部窃听,不导电,在设备之间没有接地的麻烦等。

光纤分类
  (一)按照制造光纤所用的材料分:石英系光纤、多组分玻璃光纤、塑料包层石英芯光纤、全塑料光纤和氟化物光纤。
  塑料光纤是用高度透明的聚苯乙烯或聚甲基丙烯酸甲酯(有机玻璃)制成的。它的特点是制造成本低廉,相对来说芯径较大,与光源的耦合效率高,耦合进光纤的光功率大,使用方便。但由于损耗较大,带宽较小,这种光纤只适用于短距离低速率通信,如短距离计算机网链路、船舶内通信等。目前通信中普遍使用的是石英系光纤。
  (二)按光在光纤中的传输模式分:单模光纤和多模光纤。
  多模光纤的纤芯直径为50~62.5μm,包层外直径125μm,单模光纤的纤芯直径为8.3μm,包层外直径125μm。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。由于OHˉ的吸收作用,0.90~1.30μm和1.34~1.52μm范围内都有损耗高峰,这两个范围未能充分利用。80年代起,倾向于多用单模光纤,而且先用长波长1.31μm。
  多模光纤
  多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。
  单模光纤
  单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。后来又发现在1.31μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。这就是说在1.31μm波长处,单模光纤的总色散为零。从光纤的损耗特性来看,1.31μm处正好是光纤的一个低损耗窗口。这样,1.31μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。1.31μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。
  (三)按最佳传输频率窗口分:常规型单模光纤和色散位移型单模光纤。
  常规型:光纤生产长家将光纤传输频率最佳化在单一波长的光上,如1300μm。
  色散位移型:光纤生产厂家将光纤传输频率最佳化在两个波长的光上,如:1300μm和1550μm。
  我们知道单模光纤没有模式色散所以具有很高的带宽,那么如果让单模光纤工作在1.55μm波长区,不就可以实现高带宽、低损耗传输了吗?但是实际上并不是这么简单。常规单模光纤在1.31μm处的色散比在1.55μm处色散小得多。这种光纤如工作在1.55μm波长区,虽然损耗较低,但由于色散较大,仍会给高速光通信系统造成严重影响。因此,这种光纤仍然不是理想的传输媒介。
  为了使光纤较好地工作在1.55μm处,人们设计出一种新的光纤,叫做色散位移光纤(DSF)。这种光纤可以对色散进行补偿,使光纤的零色散点从1.31μm处移到1.55μm附近。这种光纤又称为1.55μm零色散单模光纤,代号为G653。
  G653光纤是单信道、超高速传输的极好的传输媒介。现在这种光纤已用于通信干线网,特别是用于海缆通信类的超高速率、长中继距离的光纤通信系统中。
  色散位移光纤虽然用于单信道、超高速传输是很理想的传输媒介,但当它用于波分复用多信道传输时,又会由于光纤的非线性效应而对传输的信号产生干扰。特别是在色散为零的波长附近,干扰尤为严重。为此,人们又研制了一种非零色散位移光纤即G655光纤,将光纤的零色散点移到1.55μm 工作区以外的1.60μm以后或在1.53μm以前,但在1.55μm波长区内仍保持很低的色散。这种非零色散位移光纤不仅可用于现在的单信道、超高速传输,而且还可适应于将来用波分复用来扩容,是一种既满足当前需要,又兼顾将来发展的理想传输媒介。
  还有一种单模光纤是色散平坦型单模光纤。这种光纤在1.31μm到1.55μm整个波段上的色散都很平坦,接近于零。但是这种光纤的损耗难以降低,体现不出色散降低带来的优点,所以目前尚未进入实用化阶段。 
  (四)按折射率分布情况分:阶跃型和渐变型光纤。
   阶跃型:光纤的纤芯折射率高于包层折射率,使得输入的光能在纤芯一包层交界面上不断产生全反射而前进。这种光纤纤芯的折射率是均匀的,包层的折射率稍低一些。光纤中心芯到玻璃包层的折射率是突变的,只有一个台阶,所以称为阶跃型折射率多模光纤,简称阶跃光纤,也称突变光纤。这种光纤的传输模式很多,各种模式的传输路径不一样,经传输后到达终点的时间也不相同,因而产生时延差,使光脉冲受到展宽。所以这种光纤的模间色散高,传输频带不宽,传输速率不能太高,用于通信不够理想,只适用于短途低速通讯,比如:工控。但单模光纤由于模间色散很小,所以单模光纤都采用突变型。这是研究开发较早的一种光纤,现在已逐渐被淘汰了。
  渐变型光纤:为了解决阶跃光纤存在的弊端,人们又研制、开发了渐变折射率多模光纤,简称渐变光纤。光纤中心芯到玻璃包层的折射率是逐渐变小,可使高次模的光按正弦形式传播,这能减少模间色散,提高光纤带宽,增加传输距离,但成本较高,现在的多模光纤多为渐变型光纤。渐变光纤的包层折射率分布与阶跃光纤一样,为均匀的。渐变光纤的纤芯折射率中心最大,沿纤芯半径方向逐渐减小。由于高次模和低次模的光线分别在不同的折射率层界面上按折射定律产生折射,进入低折射率层中去,因此,光的行进方向与光纤轴方向所形成的角度将逐渐变小。同样的过程不断发生,直至光在某一折射率层产生全反射,使光改变方向,朝中心较高的折射率层行进。这时,光的行进方向与光纤轴方向所构成的角度,在各折射率层中每折射一次,其值就增大一次,最后达到中心折射率最大的地方。在这以后。和上述完全相同的过程不断重复进行,由此实现了光波的传输。可以看出,光在渐变光纤中会自觉地进行调整,从而最终到达目的地,这叫做自聚焦。 
  (五)按光纤的工作波长分:短波长光纤、长波长光纤和超长波长光纤。
  短波长光纤是指0.8~0.9μm的光纤;长波长光纤是指1.0~1.7μm的光纤;而超长波长光纤则是指2μm以上的光纤。

各种光纤接口类型介绍
光纤接头:
  FC 圆型带螺纹(配线架上用的最多)
  ST 卡接式圆型
  SC 卡接式方型(路由器交换机上用的最多)
  PC 微球面研磨抛光
  APC 呈8度角并做微球面研磨抛光
  MT-RJ 方型,一头双纤收发一体( 华为8850上有用)

光纤模块:一般都支持热插拔,
  GBIC Giga Bitrate Interface Converter, 使用的光纤接口多为SC或ST型
  SFP 小型封装GBIC,使用的光纤为LC型

使用的光纤: 
  单模:L ,波长1310 单模长距LH 波长1310,1550
  多模:SM 波长850
  SX/LH表示可以使用单模或多模光纤

在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下:
  “/”前面部分表示尾纤的连接器型号
  “SC”接头是标准方型接头,采用工程塑料,具有耐高温,不容易氧化优点。传输设备侧光接口一般用SC接头
  “LC”接头与SC接头形状相似,较SC接头小一些。
  “FC”接头是金属接头,一般在ODF侧采用,金属接头的可插拔次数比塑料要多。
  连接器的品种信号较多,除了上面介绍的三种外,还有MTRJ、ST、MU等,具体的外观参见下图:

  “/”后面表明光纤接头截面工艺,即研磨方式。
  “PC”在电信运营商的设备中应用得最为广泛,其接头截面是平的。
  “UPC”的衰耗比“PC”要小,一般用于有特殊需求的设备,一些国外厂家ODF架内部跳纤用的就是FC/UPC,主要是为提高ODF设备自身的指标。另外,在广电和早期的CATV中应用较多的是“APC”型号,其尾纤头采用了带倾角的端面,可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。由于光纤折射率分布的不均匀会再度返回耦合面,此时虽然能量很小但由于模拟信号是无法彻底消除噪声的,所以相当于在原来的清晰信号上叠加了一个带时延的微弱信号,表现在画面上就是重影。尾纤头带倾角可使反射光不沿原路径返回。一般数字信号一般不存在此问题。

光纤连接器
  光纤连接器是光纤与光纤之间进行可拆卸(活动)连接的器件,它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小,这是光纤连接器的基本要求。在一定程度上,光纤连接器也影响了光传输系统的可靠性和各项性能。
  光纤连接器按传输媒介的不同可分为常见的硅基光纤的单模、多模连接器,还有其它如以塑胶等为传输媒介的光纤连接器;按连接头结构形式可分为:FC、SC、ST、LC、D4、DIN、MU、MT等等各种形式。其中,ST连接器通常用于布线设备端,如光纤配线架、光纤模块等;而SC和MT连接器通常用于网络设备端。按光纤端面形状分有FC、PC(包括SPC或UPC)和APC;按光纤芯数划分还有单芯和多芯(如MT-RJ)之分。光纤连接器应用广泛,品种繁多。在实际应用过程中,我们一般按照光纤连接器结构的不同来加以区分。以下是一些目前比较常见的光纤连接器:
(1)FC型光纤连接器
  这种连接器最早是由日本NTT研制。FC是Ferrule Connector的缩写,表明其外部加强方式是采用金属套,紧固方式为螺丝扣。最早,FC类型的连接器,采用的陶瓷插针的对接端。此类连接器结构简单,操作方便,制作容易,但光纤端面对微尘较为敏感,且容易产生菲涅尔反射,提高回波损耗性能较为困难。后来,对该类型连接器做了改进,采用对接端面呈球面的插针(PC),而外部结构没有改变,使得插入损耗和回波损耗性能有了较大幅度的提高。
(2)SC型光纤连接器
  这是一种由日本NTT公司开发的光纤连接器。其外壳呈矩形,所采用的插针与耦合套筒的结构尺寸与FC型完全相同,。其中插针的端面多采用PC或APC型研磨方式;紧固方式是采用插拔销闩式,不需旋转。此类连接器价格低廉,插拔操作方便,介入损耗波动小,抗压强度较高,安装密度高。ST和SC接口是光纤连接器的两种类型,对于10Base-F连接来说,连接器通常是ST类型的,对于100Base-FX来说,连接器大部分情况下为SC类型的。ST连接器的芯外露,SC连接器的芯在接头里面。
(3) 双锥型连接器(Biconic Connector)
  这类光纤连接器中最有代表性的产品由美国贝尔实验室开发研制,它由两个经精密模压成形的端头呈截头圆锥形的圆筒插头和一个内部装有双锥形塑料套筒的耦合组件组成。
(4) DIN47256型光纤连接器
  这是一种由德国开发的连接器。这种连接器采用的插针和耦合套筒的结构尺寸与FC型相同,端面处理采用PC研磨方式。与FC型连接器相比,其结构要复杂一些,内部金属结构中有控制压力的弹簧,可以避免因插接压力过大而损伤端面。另外,这种连接器的机械精度较高,因而介入损耗值较小。
(5) MT-RJ型连接器
  MT-RJ起步于NTT开发的MT连接器,带有与RJ-45型LAN电连接器相同的闩锁机构,通过安装于小型套管两侧的导向销对准光纤,为便于与光收发信机相连,连接器端面光纤为双芯(间隔0.75mm)排列设计,是主要用于数据传输的下一代高密度光纤连接器。
(6) LC型连接器 )
  LC型连接器是著名Bell(贝尔)研究所研究开发出来的,采用操作方便的模块化插孔(RJ)闩锁机理制成。其所采用的插针和套筒的尺寸是普通SC、FC等所用尺寸的一半,为1.25mm。这样可以提高光纤配线架中光纤连接器的密度。目前,在单模SFF方面,LC类型的连接器实际已经占据了主导地位,在多模方面的应用也增长迅速。
(7) MU型连接器
  MU(Miniature unit Coupling)连接器是以目前使用最多的SC型连接器为基础,由NTT研制开发出来的世界上最小的单芯光纤连接器。该连接器采用1.25mm直径的套管和自保持机构,其优势在于能实现高密度安装。利用MU的l.25mm直径的套管,NTT已经开发了MU连接器系列。它们有用于光缆连接的插座型连接器(MU-A系列);具有自保持机构的底板连接器(MU-B系列)以及用于连接LD/PD模块与插头的简化插座(MU-SR系列)等。随着光纤网络向更大带宽更大容量方向的迅速发展和DWDM技术的广泛应用,对MU型连接器的需求也将迅速增长。

光纤配线箱
  光纤配线箱适用于光缆与光通信设备的配线连接,通过配线箱内的适配器,用光跳线引出光信号,实现光配线功能。也适用于光缆和配线尾纤的保护性连接。

光端机
  目前,常用的光端机一端是接光传输系统(一般是SDH光同步数字传输网),另一端(用户端)出来的是2M接口。另外光端机还有PDH(准同步数字系列)的。光端机要比光纤收发器复杂得多,除光电的耦合还有复用-解复用,影射-解影射等信号的编码过程。

光纤收发器
  简单的讲,光纤收发器一端是接光传输系统,另一端(用户端)出来的是10/100M以太网接口。光纤收发器都是实现光电信号转换作用的。光纤收发器的主要原理是通过光电耦合来实现的,对信号的编码格式没有什么变化。
  目前国外和国内生产光纤收发器的厂商很多,产品线也极为丰富。为了保证与其他厂家的网卡、中继器、集线器和交换机等网络设备的完全兼容,光纤收发器产品必须严格符合10Base-T、100Base-TX、100Base-FX、IEEE802.3和IEEE802.3u等以太网标准,。除此之外,在EMC防电磁辐射方面应符合FCC Part15标准。时下由于国内各大运营商正在大力建设小区网、校园网和企业网,因此光纤收发器产品的用量也在不断提高,以更好地满足接入网建设的需要。

光纤收发器通常具有以下基本特点。
 1、提供超低时延的数据传输。
 2、对网络协议完全透明。
 3、多采用专用ASIC芯片实现数据线速转发。可编程ASIC将多项功能集中到一个芯片上,具有设计简单、可靠性高、电源消耗少等优点,能使设备得到更高的性能和更低的成本。
 4、设备多采用1+1的电源设计,支持超宽电源电压,实现电源保护和自动切换。
 5、支持超宽的工作温度范围。
 6、支持齐全的传输距离(0~120公里)

几种光纤接口(ST,SC,LC,FC),如图示:
  LC到LC,LC就是路由器常用的SFP,mini GBIC所插的线头。
  FC转SC,FC一端插光纤步线架,SC一端就是catalyst也好,其他也好上面的GBIC所插线缆。
  ST到FC,对于10Base-F连接来说,连接器通常是ST类型,另一端FC连的是光纤步线架。
  SC到SC两头都是GBIC的。
  SC到LC,一头GBIC,另一头MINI-GBIC。
[Edit on 2006-12-12 22:48:49 By 笑傲江湖]
微信支付宝

评 论2 引 用0 浏 览5470

上一篇真实的谎言

下一篇全国农村小学初中2007年将全部免收学杂费

信息列表:

楼主

悠然
2009-01-15 17:09
请问光端盒和光纤收发器箱是一个东西吗?

楼主

nini
2007-03-28 18:33
请问光线连接器中的套筒和插针是同一个东西吗?看了好多文章都快把我搞糊涂了
说点什么:

正文内容:

 

图片博文

汪峰 《生无所求》

扫一扫分享之

人到穷途应一笑,几凡失意仍能傲。成败何须问江湖,我心依旧任逍遥。
这一生只想好好做个平凡的人,有个家有个梦,陪我迎接每一个早晨。
这一生只想好好做个平凡的人,何必争何必问,只有快乐开心才是真。